Synthesis and structures of silicon-, germanium-, and tin-containing imido-alkyl molybdenum complexes $(ArN)_2Mo(CH_2EMe_3)_2$ (E = Si, Ge, Sn)

L. N. Bochkarev, * A. V. Nikitinskii, A. A. Skatova, Yu. E. Begantsova, V. I. Shcherbakov, I. P. Malysheva, G. V. Basova, G. K. Fukin, Yu. A. Kurskii, S. Ya. Khorshev, Yu. P. Barinova, and G. A. Abakumov

G. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 ul. Tropinina, 603950 Nizhny Novgorod, Russian Federation. Fax: +7 (831 2) 12 7497. E-mail: lnb@imoc.sinn.ru

New silicon-, germanium-, and tin-containing imido-alkyl molybdenum complexes $(ArN)_2Mo(CH_2EMe_3)_2$ (Ar is 2,6-diisopropylphenyl; E = Si(1), Ge(2), Sn(3)) were prepared in the crystalline state in 58-66% yields by the reactions of the $(ArN)_2MoCl_2(DME)$ complex with alkyllithium derivatives Me_3ECH_2Li (E = Si or Ge) or the Grignard reagents Me_3ECH_2MgCl (E = Ge or Sn). The structures of complexes 1-3 and the known analog $(ArN)_2Mo(CH_2Bu^t)_2$ (4) were established by X-ray diffraction analysis. Complexes 1-3 were found to be isostructural. The coordination environment about the Mo atom can be described as a distorted tetrahedron. Complex 4 has a similar structure. The Mo-C distance tends to decrease with increasing electron-donating ability of the EMe_3 group.

Key words: imido-alkyl molybdenum complexes, silicon-, germanium-, and tin-containing; synthesis, structure, X-ray diffraction analysis.

The imido-alkyl molybdenum complexes $(ArN)_2Mo(CH_2R)_2$ (Ar is 2,6-diisopropylphenyl; $R=Bu^t$, $CMe_2Ph)^{1-4}$ are used as the starting compounds in the synthesis of carbene complexes, which serve as active catalysts for olefin metathesis. Data on analogous imido-alkyl derivatives of molybdenum with heteroatom-containing alkyl groups are scarce,⁵ and the possibility of using these compounds for the synthesis of carbene complexes is poorly studied. In the present study, we synthesized and structurally characterized the silicon-, germanium-, and tin-containing imido-alkyl molybdenum complexes $(ArN)_2Mo(CH_2EMe_3)_2$ (E=Si, Ge, Sn).

The new imido-alkyl molybdenum complexes were prepared by the reaction of molybdenum diimido chloride with heteroatom-containing alkyllithium derivatives or Grignard reagents (Scheme 1).

Complexes 1-3 were isolated in pure form in 58-66% yields as dark-red crystals, which are unstable in air and readily soluble in organic solvents. Compounds 1-3 were characterized by elemental analysis, IR spectroscopy, and ^{1}H , ^{13}C , ^{29}Si , and ^{119}Sn NMR spectroscopy.

The structures of complexes 1-3 were established by X-ray diffraction analysis. To compare the structural parameters of the complexes, we also determined the structure of the known $(ArN)_2Mo(CH_2Bu^t)_2$ compound $(4).^1$ X-ray diffraction analysis demonstrated that complexes 1-3 are isostructural (Fig. 1). Complex 4 has a similar

Scheme 1

$$(ArN)_{2}MoCl_{2}(DME) + 2 Me_{3}ECH_{2}Li \xrightarrow{i}$$

$$E = Si, Ge$$

$$\longrightarrow (ArN)_{2}Mo(CH_{2}EMe_{3})_{2} + 2 LiCl$$

$$1, 2$$

$$(ArN)_{2}MoCl_{2}(DME) + 2 Me_{3}ECH_{2}MgCl \xrightarrow{i}$$

$$E = Ge, Sn$$

$$\longrightarrow (ArN)_{2}Mo(CH_{2}EMe_{3})_{2} + 2 MgCl_{2}$$

$$2, 3$$

$$E = Si (1), Ge (2), Sn (3)$$

$$i. Diethyl ether, -30-+20 °C.$$

structure but crystallizes in a different modification (Fig. 2). In complexes 1—4, the Mo atoms have tetrahedral coordination. The Mo(1)—C(25) and Mo(1)—C(29) distances are, respectively, 2.115(2) and 2.117(2) Å for 1, 2.118(1) and 2.116(2) Å for 2, and 2.099(3) and 2.100(3) Å for 3. The C(25)—E(1) and C(29)—E(2) distances are, respectively, 1.860(2) and 1.870(2) Å for 1, 1.960(1) and 1.958(1) Å for 2, and 2.157(3) and 2.156(3) Å for 3, which are slightly larger than the sum of the covalent radii of the carbon and the corresponding sp³-hybridized heteroatom. In complex 4, the Mo(1)—C(13) distance is 2.126(4) Å. Analysis of the Mo—C distances in a series of

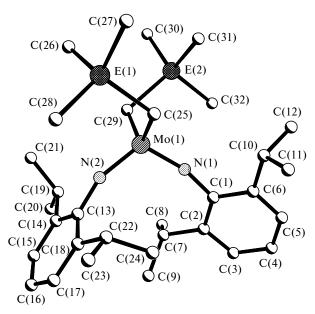


Fig. 1. Molecular structures of complexes 1 (E = Si), 2 (E = Ge), and 3 (E = Sn).

related compounds 4 and 1–3 shows that the Mo–C distances tend to decrease (2.126(4)-2.099(3) Å) with increasing electron-donating ability of the EMe₃ group (E = Si (1), Ge (2), Sn (3), C (4)).

The Mo—N distances in molecules **1—4** are in the range of 1.745(1)—1.758(1) Å, which is comparable with the Mo—N distance (1.759(2) Å) in the 2,6-Pr $^{i}_{2}$ -C₆H₃N=Mo fragment in the Mo(NC₆H₃-2,6-Pr $^{i}_{2}$)(NBu t)(CH₂Bu t)₂ complex.⁶

To summarize, we synthesized and structurally characterized the new imido-alkyl molybdenum complexes $(ArN)_2Mo(CH_2EMe_3)_2$ (E = Si (1), Ge (2), Sn (3)) and the known hydrocarbon analog $(ArN)_2Mo(CH_2Bu^t)_2$ (4) by X-ray diffraction. The Mo—C distances were found to decrease with increasing electron-donating ability of the EMe₃ group.

Experimental

All operation were carried out in evacuated sealed tubes using the standard Schlenk technique. Thoroughly dried and deaerated solvents were used. The starting reagents, viz., $(ArN)_2MoCl_2(DME)$, 7 Me_3SiCH_2Li , 8 Me_3GeCH_2Li , 8 Me_3GeCH_2MgCl , 9 Me_3SnCH_2MgCl , and the $(ArN)_2Mo(CH_2Bu^t)_2$ complex (4), 1 were synthesized according to known procedures. The IR spectra were recorded on a Perkin—Elmer-577 spectrometer. Samples were prepared under argon as Nujol mulls. The 1H , ^{13}C , ^{29}Si , and ^{119}Sn NMR spectra were measured on a Bruker DPX-200 spectrometer in C_6D_6 using Me_4Si as the internal standard for ^{119}Sn NMR spectroscopy and Me_4Sn as the internal standard for ^{119}Sn NMR spectroscopy.

The decomposition temperatures were determined in evacuated sealed tubes and are uncorrected.

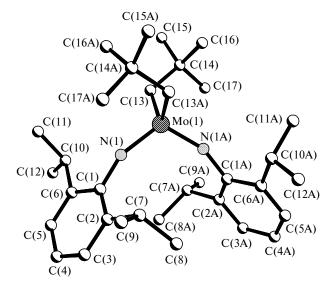


Fig. 2. Molecular structure of complex 4.

The X-ray diffraction data sets were collected on an automated Smart APEX diffractometer. Principal crystallographic characteristics and parameters of structure refinement are given in Table 1. All structures were solved by direct methods and refined by the least-squares method against F^2_{hkl} with anisotropic displacement parameters for all nonhydrogen atoms. The H atoms in complexes 1, 3, and 4 were placed in geometrically calculated positions and refined using a riding model. The H atoms in complex 2 were located from difference Fourier syntheses and refined isotropically. The refinement revealed disorder of the C(11) and C(12) atoms in 1 (Me groups in the Pr^i substituent), the C(11) atom in 3 (Me group in the Pr^i substituent), and the isopropyl groups and the *tert*-butyl substituent in 4. Molecules 1-3 occupy general positions. The Mo atom in molecule 4 is located on the C_2 axis.

All calculations were carried out with the use of the SHELXTL v. 6.10 program package. ¹⁰ Selected bond lengths and bond angles are given in Table 2.

Bis(2,6-diisopropylphenylimido)bis(trimethylsilylmethyl)molybdenum (ArN)2Mo(CH2SiMe3)2 (1). A solution of Me₃SiCH₂Li (0.6 g, 6.38 mmol) in diethyl ether (10 mL) was added with stirring to a dark-cherry solution of (ArN)₂MoCl₂(DME) (1.98 g, 3.26 mmol) in diethyl ether (30 mL) at -30 °C. The reaction mixture was gradually heated to room temperature. The colorless precipitate that formed was separated from the solution by centrifugation. The precipitate contained LiCl (0.27 g, 100.0%). Slow evaporation of the solvent from the reaction solution at room temperature afforded compound 1 in a yield of 1.34 g (66.4%) as dark-red crystals, which melt with decomposition at temperatures higher than 180 °C. Found (%): C, 61.98; H, 9.08. C₃₂H₅₆MoN₂Si₂. Calculated (%): C, 61.94; H, 9.03. IR, v/cm⁻¹: 3060, 1170, 760 (2,6-diisopropylphenyl); 1275, 1245, 840, 700, 630 (CH₂SiMe₃). ¹H NMR, δ : 0.28 (s, 18 H, CH₂SiMe₃); 1.14 (d, 24 H, CH<u>Me₂</u>); 1.55 (s, 4 H, $C_{\underline{H}_2}SiMe_3$); 3.69 (sept, 4 H, $C_{\underline{H}}Me_2$); 6.8—7.0 (m, 6 H, H(3), H(4)). DEPT 13 C NMR, δ : 1.87 (CH₂SiMe₃, $J_{C,^{29}Si} = 51.0 \text{ Hz}$; 23.5 (<u>CHMe</u>₂); 28.7 (CH<u>Me</u>₂); 50.3 (<u>C</u>H₂SiMe₃); 122.9 (CH(3)); 126.3 (CH(4)); 142.8 (C(2)); 152.9 (C(1)). ²⁹Si NMR, δ : -0.5.

Parameter	1	2	3	4		
Molecular formula	C ₃₂ H ₅₆ MoN ₂ Si ₂	C ₃₂ H ₅₆ Ge ₂ MoN ₂	$C_{32}H_{56}MoN_2Sn_2$	$C_{34}H_{56}MoN_2$		
Molecular weight	620.91	709.91	802.11	588.75		
Crystal dimensions/mm	$0.5 \times 0.2 \times 0.2$	$0.2 \times 0.1 \times 0.08$	$0.18 \times 0.12 \times 0.08$	$0.10 \times 0.08 \times 0.08$		
T/K	183(2)	100(2)	150(2)	100(2)		
Space group	$P2_1/c$	$P2_1/n$	$P2_1/n$	C2/c		
a/Å	11.158(2)	11.106(1)	11.360(1)	18.243(3)		
b/Å	16.382(3)	16.367(1)	16.420(1)	10.9685(15)		
c/Å	20.154(3)	19.969(1)	20.114(1)	18.372(3)		
β/deg	103.081(3)	103.286(1)	103.229(1)	111.083(3)		
$V/\text{Å}^3$	3588(1)	3533(1)	3652(1)	3430.2(8)		
\dot{Z}	4	4	4	4		
$d_{\rm calc}/{\rm g~cm^{-3}}$	1.149	1.335	1.459	1.140		
μ/mm^{-1}	4.53	20.61	17.15	_		
Absorption correction	SADABS program					
T_{\min}/T_{\max}	0.805/0.915	0.7815/0.9310	0.7477/0.8750	0.9607/0.9684		
F(000)	1328	1472	1616	1264		
$2\theta_{\rm max}/{\rm deg}$	58	58	52	48		
Number of measured	25744	48332	22299	12049		
reflections						
Number of independent	9444 (0.026)	9350 (0.0281)	7171 (0.0324)	2701 (0.0622)		
reflections (R_{int})						
R_1 (based on F for	0.0341	0.0214	0.0306	0.0549		
reflections with $I > 2\sigma(I)$)					
wR_2 (based on F^2 for	0.0883	0.0551	0.0739	0.1374		
all reflections)						
Number of parameters	353	558	500	253		
in refinement						
Weighting scheme	$w^{-1} = \sigma^2(F_0^2) + (\alpha P)^2 + \beta P$, where $P = 1/3(F_0^2 + 2F_c^2)$					
α	0.0433	0.0270	0.0422	0.0499		
β	0.8411	1.5994	0	15.561		
GOOF	1.064	1.046	1.004	1.123		
$(e_{\min}/e_{\max})/e \cdot Å^{-3}$	-0.370/0.678	-0.338/0.609	-0.559/0.904	-1.854/1.170		

Table 1. Crystallographic data and parameters of structure refinement of complexes 1—4

Bis(2,6-diisopropylphenylimido)bis(trimethylgermylmethyl)molybdenum (ArN)₂Mo(CH₂GeMe₃)₂ (2). A. The synthesis and isolation of complex 2 were carried out as described above. The synthesis starting from (ArN)₂MoCl₂(DME) (2.19 g, 3.60 mmol) and Me₃GeCH₂Li (1.0 g, 7.21 mmol) afforded LiCl in a yield of 0.28 g (93.3%) and complex 2 in a yield of 1.48 g (58.3%) as dark-red crystals, which melt with decomposition at a temperature higher than 175 °C. Found (%): C, 54.13; H, 7.96. C₃₂H₅₆Ge₂MoN₂. Calculated (%): C, 54.15; H, 7.90. IR, v/cm^{-1} : 3060, 1170, 760 (2,6-diisopropylphenyl); 1270, 1240, 810, 590, 560 (CH₂GeMe₃). ¹H NMR, δ: 0.41 (s, 18 H, CH_2GeMe_3); 1.16 (d, 24 H, $CHMe_2$); 1.88 (s, 4 H, CH_2GeMe_3); 3.73 (sept, 4 H, $C\underline{H}Me_2$); 6.90—7.15 (m, 6 H, H(3), H(4)). ¹³C NMR, δ: 1.4 (CH₂Ge<u>Me₃</u>); 23.3 (<u>C</u>HMe₂); 28.6 (CH<u>Me₂</u>); 51.9 (CH₂GeMe₃); 122.8 (CH(3)); 126.1 (CH(4)); 142.7 (C(2)); 153.1 (C(1)).

B. A solution of Me₃GeCH₂MgCl (1.24 g, 6.52 mmol) in diethyl ether (16.6 mL, 0.39 mol L⁻¹) was added with stirring to a dark-cherry solution of (ArN)₂MoCl₂(DME) (1.98 g, 3.26 mmol) in diethyl ether (30 mL) at -30 °C. The reaction mixture was gradually warmed to room temperature. The colorless precipitate that formed was separated by centrifugation. The

precipitate contained $MgCl_2$ (0.58 g, 93.6%). Slow evaporation of the solvent from the reaction solution at room temperature afforded compound 2 in a yield of 1.51 g (65.3%).

Bis(2,6-diisopropylphenylimido)bis(trimethylstannylmethyl)molybdenum (ArN)₂Mo(CH₂SnMe₃)₂ (3). The synthesis and isolation of complex 3 were carried out as described above (method B). The synthesis starting from $(ArN)_2MoCl_2(DME)$ (2.12 g, 3.50 mmol) and a solution of Me₃SnCH₂MgCl (1.66 g, 3.49 mmol) in diethyl ether (12.7 mL, 0.55 mol L^{-1}) afforded MgCl₂ in a yield of 0.63 g (60.0%) and complex 3 in a yield of 1.48 g (58.3%) as dark-red crystals, which melt with decomposition at a temperature higher than 152 °C. Found (%): C, 47.95; H, 7.07. C₃₂H₅₆MoN₂Sn₂. Calculated (%): C, 47.92; H, 6.99. IR, v/cm^{-1} : 3060, 1170, 760 (2,6-diisopropylphenyl); 1205, 800, 600, 520, 510 (CH₂SnMe₃). ¹H NMR, δ: 0.29 (s, 18 H, $CH_2Sn\underline{Me}_3$, ${}^2J_{H,117/119Sn} = 51.0/53.2 Hz$); 1.13 (d, 24 H, $CH\underline{Me}_2$); 2.25 (s, 4 H, $C\underline{H}_2SnMe_3$, ${}^2J_{H,117/119Sn} = 54.2/54.7 Hz$); 3.68 (sept, 4 H, $C\underline{H}Me_2$); 6.8–7.0 (m, 6 H, H(3), H(4)). ¹³C NMR, δ : -7.04 (CH₂SnMe₃, $J_{C,117/119Sn}$ = 313.9/328.5 Hz); 23.5 (<u>CHMe</u>₂); 28.7 (<u>CHMe</u>₂); 48.8 (<u>CH</u>₂SnMe₃, ${}^{2}J_{C_{117/119Sn}} =$ 162.3/169.6 Hz); 122.7 (CH(3)); 125.9 (CH(4)); 142.6 (C(2)); 153.2 (C(1)). ¹¹⁹Sn NMR, δ: 2.4.

Table 2. Selected bond lengths (*d*) and bond angles (ω) in complexes 1–4

Parameter	1 (E = Si)	2 (E = Ge)	3 (E = Sn)	4 (E = C)	
Bond	d/Å				
Mo(1)-N(1)	1.745(1)	1.745(1)	1.752(2)	1.750(4)	
Mo(1)-N(2)	1.753(1)	1.758(1)	1.755(2)	_ ` _	
Mo(1)-C(25)	2.115(2)	2.118(1)	2.099(3)	_	
Mo(1)-C(29)	2.117(2)	2.116(2)	2.100(3)	_	
E(1)-C(25)	1.860(2)	1.960(1)	2.157(3)	_	
E(2)-C(29)	1.870(2)	1.958(1)	2.156(3)	_	
N(1)-C(1)	1.393(2)	1.396(2)	1.392(3)	1.392(6)	
N(2)-C(13)	1.393(2)	1.391(1)	1.396(3)	_ ` `	
Mo(1)-C(13)	_	_	_	2.126(4)	
Angle*	ω/deg				
N(1)-Mo(1)-N(2)	112.49(6)	112.38(5)	113.00(9)	_	
N(1)-Mo(1)-C(25)	104.24(6)	106.39(6)	106.51(10)	_	
N(2)-Mo(1)-C(25)	107.23(6)	107.19(6)	107.05(10)	_	
N(1)-Mo(1)-C(29)	107.22(6)	104.84(6)	104.75(10)	_	
N(2)-Mo(1)-C(29)	107.73(6)	107.33(6)	107.50(10)	_	
C(25)-Mo(1)-C(29)	118.05(6)	118.83(6)	118.23(11)	_	
C(1)-N(1)-Mo(1)	164.74(12)	164.83(10)	164.91(18)	158.7(3)	
C(13)-N(2)-Mo(1)	156.53(10)	157.25(10)	157.82(17)	_	
E(1)-C(25)-Mo(1)	116.95(8)	114.60(7)	114.19(12)	_	
E(2)-C(29)-Mo(1)	116.88(8)	114.16(7)	113.29(13)	_	
N(1)-Mo(1)-N(1A)	_	_	_	112.6(2)	
N(1)-Mo(1)-C(13)	_	_	_	106.24(16)	
N(1)-Mo(1)-C(13A)	_	_	_	108.46(17)	
N(1A)-Mo(1)-C(13A)	_	_	_	106.24(16)	
N(1A)-Mo(1)-C(13)	_	_	_	108.46(17)	
C(13)— $Mo(1)$ — $C(13A)$	_	_	_	115.0(3)	
Mo(1)-C(13)-C(14)	_	_	_	120.9(3)	

^{*} Symmetry code: -x, y, -z + 1/2.

This study was financially supported by the Russian Foundation for Basic Research (Project No. 02-03-32113) and the Foundation of the President of the Russian Federation (Program for the Support of Leading Scientific Schools, Grant NSh 58.2003.3).

References

- R. R. Schrock, J. S. Murdzek, G. C. Bazan, J. Robbins, M. DiMare, and M. O'Regan, *J. Am. Chem. Soc.*, 1990, 112, 3875.
- H. H. Fox, J.-K. Lee, L. Y. Park, and R. R. Schrock, Organometallics, 1993, 12, 759.
- 3. N. Bryson, M.-T. Youinou, and J. A. Osborn, *Organometallics*, 1991, **10**, 3389.

- V. C. Gibson, C. Redshaw, G. L. P. Walker, J. A. K. Howard,
 V. J. Hoy, J. M. Cole, L. G. Kuzmina, and D. S. De Silva,
 J. Chem. Soc., Dalton Trans., 1999, 161.
- C. G. Ortiz, K. A. Abbound, and J. M. Boncella, *Organometallics*, 1999, 18, 4253.
- A. Bell, W. Clegg, P. W. Dyer, M. R. J. Elsegood, V. C. Gibson, and E. L. Marshall, J. Chem. Soc., Chem. Commun., 1994, 2547.
- 7. H. H. Fox, K. B. Yap, J. Robbins, S. Cai, and R. R. Schrock, *Inorg. Chem.*, 1992, **31**, 2287.
- 8. R. H. Baney and R. J. Krager, *Inorg. Chem.*, 1964, 3, 1657.
- 9. D. Seyferth and E. G. Rochow, J. Org. Chem., 1955, 20, 250.
- 10. G. M. Sheldrick, *SHELXTL*, *V. 6.10*, Bruker AXS Inc., Madison, WI-53719, USA, 2000.

Received November 12, 2004